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The scientific goal of this project is to predict protein structure and recognize docking partners at 
unprecedented speed, capacity and accuracy. To achieve this computationally intensive goal we utilize a 
petascale-proven platform-independent application-neutral framework for running loosely coupled 
simulations on grids and petascale systems. The unique amino acid sequence of a protein determines its 
secondary (2o) structure elements (e.g., helices and strands) which assemble into a 3D tertiary (3o) 
structure. This “folded” structure determines the protein’s function and its docking partners. The centrality 
of these processes to a vast array of scientific questions makes our capability a transformative enabler. 
      This project is crucial for treating docking and will enable the OOPS folding code to run on all of the 
major open-science petascale resources of the next five years and beyond, enabling it to predict the 
structure of large proteins and currently unsolvable docking targets. Prototypes demonstrate that OOPS 
runs on Blue Gene P (BG/P) at scales ranging up to 65,536 processors, using an innovative computing 
framework. This framework is tested at scales up to 163,840 processors and employs petascale systems 
in a hybrid loosely/tightly coupled manner which will scale efficiently to future petascale systems. The 
OOPS user interface enables petascale use of OOPS via web and service interfaces and custom scripts. 

Applicability to this program: Program timing is ideal as the OOPS code has just proven successful in 
predicting the structure of small proteins. Scaling to larger proteins requires greater computing resources. 
Our team is already doing coding and testing on petascale hardware. We have worked extensively with 
the BG/P and TeraGrid Ranger, and are to our knowledge the only group to date that has executed a 
wide variety of applications at scales above 64K cores using a generic middleware platform. 
     Furthermore, the proposed research requires the close interactions within our multidisciplinary 
chemistry/computer science team that extends beyond projects funded by Core programs. The demands 
of the simulations impose constraints that guide the development of the framework for loosely coupled 
petascale computing. The petascale framework, in turn, is necessary to meet the demands of the heavier 
computing associated with docking. Our collaborative effort of porting OOPS to large scale computing 
environments requires an integration of petascale computing and scientific skills not fundable elsewhere. 
Intellectual merit: Outstanding challenges in the folding and docking fields include (a) predicting large 
and multi-domain proteins, particularly those where subdomains have little homology to known structures, 
and (b) the prediction of binding partners (and the relaxation upon binding) in order to map out interaction 
networks within a single organism. To address these challenges, petascale methods are essential. 
     While the folding/docking field has been active for decades, petascale OOPS is needed because most 
other algorithms rely heavily on known structures or fragments, being either homology- or template-
based. Their success rapidly diminishes as the amount of known information decreases. Similarly, the 
reliable protein-protein docking is a hit-or-miss affair and often requires backbone relaxation for success. 
The identification of the strongest pairwise interactions and docking interfaces within a group of proteins 
remains a long-range goal. Efficient, scalable new approaches are needed.  
      Nearly uniquely, OOPS incorporates basic chemical principles and mimics a folding pathway to 
restrict search space. As folding often is robust to side chain substitution, we believe that fine side chain 
details are unnecessary and a “Cβ” representation is the most appropriate for the problem at hand so long 
as the side chain information can be properly retained. Our method retains this information. The reduced 
representation enables a broader and faster search, and backbone relaxation is accomplished within the 
condensed state using our specialized move set. In contrast, most methods include all the atoms and 
consequently expend a majority of their computational time searching through a rugged side chain space. 
Given the importance in starting with the correct 2o structure, other 3o structure prediction algorithms can 
take advantage of our 2o structure predictions which are more accurate for low homology sequences than 
existing methods.  

 Broader impacts: The flexibility and availability of OOPS will transform the way protein structure can be 
predicted and assessed, making petascale systems a tool readily usable for characterizing protein 
recognition and the ever growing number of proteins that has emerged from sequencing projects. OOPS 
has sufficient inherent parallelism to scale to million core processors within the decade. The petascale 
framework will be freely available for use with other loosely coupled simulation algorithms in many diverse 
areas, simply by inserting a new simulation algorithm into the petascale framework. The current toolkit 
runs on Blue Gene P, Constellation, and XT4, and will support the architecture of Blue Waters. User 
facilities at the UChicago Computation Institute will serve a large, diverse, interactive, and collaborative 
user group for data staging, and result analysis. The training of students (undergrads, grads, postdocs, 
and users) will be an essential part of our broad EOT program. 
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A Petascale Environment for Simulations of Protein Folding and docking 
1 Overview 
As the protein targets increase in size, the need for petascale computing becomes urgent. Current 
prediction methods have limited accuracy even for proteins on the order of 100 residues when homology-
based information is minimal. To fold larger and multi-domain proteins, statistical sampling becomes a 
limiting factor.  Additionally, current docking algorithms are inconsistent. The most glaring issue in the 
folding of multi-domain proteins and the docking of complexes is “induced-fit”, wherein each of the 
constituents (either the individual domains or the binding partners) change shape and can no longer be 
treated as rigid entities. Their conformations must be adjusted in concert with their association. As a 
result, the folding and docking processes will require extra sampling rounds, which greatly increases the 
amount of computation power required.  Furthermore, this entire class of calculations generally are going 
to require a much larger number of loosely coupled calculations rather than a few, massively parallel 
calculations. Therefore, regardless of whether our or other folding/docking codes are used, the petascale 
computation environment we propose will be generally useful for virtually all protein simulations. 
The identification of the protein sequences in a genome has transformed biological studies. But it is only 
the starting point. Amino acid sequence codes for structure, which often determines function. At the next 
level, protein association is integral to signaling networks which control and orchestrate cellular 
processes. Our long-term goal is the ability to take a set of genes identified in a biological process (e.g. 
amino acid synthesis under low nutrient conditions) and provide the structure and function of the proteins, 
as well as identify their interactions and signaling connections, including the positive and negative 
feedback one interaction has on another. Petascale computation is critical for this far-reaching goal.  
What we have done to date. OOPS – the Open Protein Simulator – is a suite of C++ programs for the 
prediction of the structure of proteins with minimal use of information derived from sequence similarity or 
homology to other proteins. OOPS derives its speed and accuracy from the use of a “Cβ” model, an 
accurate statistical potential, and a search strategy involving iterative fixing of structure in multiple 
“rounds” of folding. Since OOPS uses minimal homology information and a reduced representation, its 
success depends crucially on describing the “protein physics” correctly. Great effort has been devoted to 
the energy function, e.g., interactions are conditional on backbone geometry and the relative orientation 
of side chains. Last year, its accuracy exceeded available all-atom potentials, and it has been significantly 
improved since then. Our homology-free 2o and 3o structure predictions for small proteins rival or exceed 
homology-based methods with (expensive) explicit side chains, engendering optimism for continued 
progress. Furthermore, we now employ sequence homology for additional accuracy when appropriate. 
OOPS is currently executed in parallel on modest computing clusters using an ad-hoc Python script that 
submits independent parallel jobs, analyzes results, and orchestrates the iteration of a parallel solution to 
a folding problem. Wilde’s group has, over seven years, developed a general language and execution 
environment to express scientific workflows and execute them at higher degrees of parallelism on 
platforms including petascale precursor systems such as TeraGrid’s Ranger and the ALCF BG/P. This 
environment comprises the Swift parallel scripting system [ZH+07,S08], the Falkon resource provisioner 
and scheduler[RZ+07, RZ+08] and the ZeptoOS operating system [RZ+08, Z08] developed by 
researchers at Argonne National Laboratory for use on petascale systems. Using current versions of the 
middleware components proposed here, we have run over 164M million jobs on a range of cluster and 
grid resources utilizing over 1.4M hours of CPU time – predominantly short-duration tasks not previously 
runable in such environments. 49 million of these test jobs were on the ALCF BG/P, running a set of 
diverse science applications including OOPS[FA08]. The success of these tests confirms the feasibility of 
the petascale OOPS scripting environment we describe below and motivates the program we propose. 
What this project will accomplish. We propose to adapt OOPS to easily and effectively utilize diverse 
and important existing petascale computing resources (Blue Gene, Constellation, XT4) and future 
systems (Blue Waters), thus enabling OOPS to be applied to challenging folding targets and providing the 
requisite number of docking simulations (104 – 106)  of challenging binding targets. OOPS’s performance, 
accuracy, capabilities and usability will be enhanced and will benefit from live scientific usage and testing 
on sub-petascale computing platforms.  
OOPS will be embedded into a flexible petascale computing framework that will enable top-level 
components to be easily executed by diverse scientific communities in a flexible manner with little or no 
additional programming (Section 3). The innovative computing approach we employ is characterized by a 
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flexible parallel scripting system that enables efficient execution on diverse petascale platforms, allowing 
users to harness more than one platform for a given run (i,e., a grid approach to resource utilization). This 
allows a great deal of flexibility in adapting existing programs to new requirements and algorithmic 
variations. In addition, the environment will be useable for many other applications, including other 
groups’ folding and docking algorithms, and replica exchange simulations with multiple order parameters. 
Our project plan details the specific deliverables, which includes: applications of petascale folding and 
docking, user interface and data sharing facilities, and large-scale datasets derived from testing, 
calibration and reference-data creation activities. The many education and outreach efforts and benefits 
of this effort are described below in Section 2. The computing approach is described in Section 3, 
followed by technical scientific details of the OOPS algorithms in Section 4, and comparison to other 
folding and computing approaches in Section 5. We conclude with a brief project plan sketch and a 
summary of results from prior relevant NSF funding. 
2 Education and Outreach Efforts and Contribution 
We describe here a multi-faceted plan to integrate research and education – at many levels – throughout 
the proposed project, and to create and maintain a diverse and inclusive collaboration. 
Development of Human Resources During Prior and Proposed Support Period. During the last four 
years, (bio)chemistry training and research experience was provided for one postdoctoral researcher, 
three graduate students, and four undergraduate students. We have and will continue to welcome women 
and minorities in our research groups by reaching out to members of underrepresented groups via job 
fairs regularly held at UChicago for the entire Midwest region, and will use this opportunity to recruit the 
postdoctoral research positions supported by this grant. Freed and Sosnick have a strong record of 
undergraduate participation in research as witnessed by the four undergraduates working last summer 
(with three continuing through the academic year) on joint projects. One who graduated in 2007 had two 
first author papers and will be a coauthor on two others. The prototype testing of OOPS on the Argonne 
BG/P was done by Glen Hocky, a 4th year Chemistry/Math undergraduate working with Freed and 
Sosnick and collaborating with Wilde, is an example of the ability of this effort to provide promising young 
scientists with cutting-edge computational experiences. No funds are specifically budgeted for summer 
students since their stipends are arranged separately. Freed participates in a new Graduate Program in 
Biophysical Sciences (developed and chaired by Sosnick) that requires students to work on co-mentored, 
interdisciplinary projects. Freed is also part of a program to enable high school students to work in 
research labs.  
Undergraduate and Graduate Education. Our project will involve graduate students in Biophysics, 
Computer Science, Chemistry and Biochemistry. The proposed OOPS framework will be available in an 
easy-to-use web interface that is well suited for teaching advanced undergraduate and early graduate 
students the power of emerging petascale systems for simulation and analysis.   
A central component of the proposed research is the training of students and postdocs. The Freed group 
has produced 42 PhDs, has trained 29 postdocs and several undergraduates (who have coauthored 
papers), and has hosted numerous senior researchers. The group has included women and members of 
minority groups. We participate in several outreach programs (Dreyfus, REU, Beckman scholar, PCBio, 
etc.) for attracting undergrads to research, and group members have been very active in tutorial programs 
at schools with high proportions of disadvantaged minorities. The undergrads generally go on to graduate 
school, while the graduate students move to postdoc positions and thence (as our postdocs) on to 
positions in academia, national labs, industry, or software developers.  
High School and Informal Education. The NSF-supported I2U2 project “Interactions in Understanding 
the Universe” [BG+06] on which Wilde is co-investigator, provides infrastructure and a pedagogical model 
for teaching the use of high-performance computing for discovery and collaboration in science, in both the 
high school classroom (with “e-Labs”) and the informal science museum setting (i-Labs). E-Labs provide 
a web-based environment in which students can connect instrumentation and/or simulations, upload 
share and analyze datasets, and create and share reports, posters and findings, with other students 
around the US and in several other countries (Canada, Taiwan, Israel, India). As part of our effort we 
propose to create the framework for a new e-Lab on biomolecular simulation for high school use, and a 
visually compelling i-Lab for a museum demo on how proteins fold and interact. Our proposed 
collaboration environment (section 3) will provide much of the basis for the core of these e/i-Labs. 
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Workshop program. As part of growing the local UChicago user community for the OOPS petascale 
framework, we will make aggressive use of local seminars in the Computation Institute [CI08b] and 
James Franck Institute [JFI08] as an outreach vehicle for introductory demos and tutorials on the 
capabilities enables by the proposed framework. In project year 2, once the petascale OOPS framework 
is stable, we will begin a program of workshops to promote its use by students and researchers, with a 
focus on undergraduate and graduate students and early career scientists. In addition to numerous 
periodic short workshops (a few hours to 1-day), we will prepare and deliver 2 1-week summer workshops 
at UChicago open to the national and international chemistry communities as well as the numerous 
disciplines that require protein folding and recognition/docking as a principle tool. We will recruit 
participants from the many nearby universities in the midwest (to achieve a broad impact while containing 
travel costs) and through requested funds provide limited travel support for students throughout the US. 
Investigators Freed, Sosnick and Wilde, colleagues, and participating students will all contribute to the 
workshops which will be held in meeting facilities of the Computation institute, where the recent OSG 
Midwest Grid School 2008 workshop was held. The workshops will cover a range of topics, including 
protein folding and biophysics, the use of OOPS, running OOPS at petascale, and general approaches to 
scientific petascale workflow that will be valuable to participants for general high performance scientific 
computing and data management. The workshops will be promoted to our large network of contacts 
among organizations advancing involvement in science and computing by people from under-represented 
groups, include HACU, SWE, Grace Hopper, and EPIC (Engaging People in Cyberinfrastructure). 

3 Computing Approach for Scaling OOPS to Petascale Architectures 
OOPS is currently a set of open source applications 
for fast simulation of protein folding and docking. It 
uses the C++ protein library “PL” [PL08] for 
representing, moving and performing energy 
calculations on protein structures, and also provides 
a set of useful analysis tools. A Monte Carlo 
simulated annealing (MCSA) simulation function, 
Mcsa() is the primary OOPS application. Given 
parameter files and a protein sequence it generates 
2o and 3o structure descriptions and statistics about 
the final configuration (energy, etc). Throughout, we 
speak generally of both executable applications and 
library routines as “functions” and notate them as 
FunctionName(). 

We will use a three-layer approach to escalate 
OOPS to petascale performance: Layer 1 will 
parallelize the OOPS simulated annealing loop (inc. 
the energy calculator) using multi-core and MPI 
techniques, enabling a singe MCSA to efficiently 
use a large number of CPUs. Layer 2 will exploit the 
innately parallel nature of the OOPS folding algorithm, which enables large numbers of MCSA simulation 
jobs to be done in parallel, both for multiple proteins, multiple parameter settings, and parallel “rounds”. 
Layer 3 will provide a petascale science gateway environment for the large-scale execution of OOPS for 
folding and docking. The architecture of this framework is shown in Figure 1. In the remainder of this 
section we first detail Layers 1 and 2, then define the projected speed and parallelism we seek, and 
conclude with Layer 3, the user environment. 
Layer 1: Parallelizing the core algorithm. The core OOPS folding loop exposes significant parallelism 
for effective utilization of petascale resources. While the move-evaluate steps within MCSA jobs are at 
the moment serial, the operation that dominates its processing time is calculating the energy of each 
molecular configuration from the pair-wise atomic distances (Figure 2). We will devote significant 
attention to this function by parallelizing it first for a multi-threaded environment using OpenMP [CJ+07], 
and then at a larger scale using MPI. This operation can be readily parallelized: the contribution of each 
pair of atoms to the total energy can be computed in a highly parallel manner. We will use MPI as a 

 
Figure 1: Petascale OOPS Framework 
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distribution network to partition this processing by batching subsets of the upper-triangular portion of the 
distance matrix based on the number of available “energy calculator” CPUs and then gather and sum the 
results. For a small, 76 amino protein, one eCalc() takes about .05 seconds of Pentium Q6600 CPU time 
and represents about 91% of the total cost of running Mcsa(). Generating the backbone move is about 
7%; startup is 2%. eCalc() is inherently O(N2) where N is the number of atoms interacting, hence both the 

CPU and proportion of simulation time increases 
dramatically with sequence length (proteins are ~60-300 
amino acids). 
Our proposed algorithm will perform the move and its energy 
calculation as a combined parallel operation, as follows. 
Since the moves are fast computations, each processor can 
maintain the full state of the protein, and do identical moves 
in parallel. At the start, each worker gets the same initial 
state, and is assigned a set of atom pairs Ai,Aj within the 
protein. After each move of the protein backbone, each 

worker calculates the energy for just the set of atom pairs that it was assigned. Each worker can maintain 
the set as a list of Ai,Aj pairs that it serially iterates over. Then each worker sends its energy subtotal to a 
master "annealer", who sums the constituent energies and decides whether or not to accept the move. 
The master responds to the workers with accept/reject, and then the workers do the next move. Each 
communication is very compact and can use fast collective primitives. Based on profile measurements 
cited above, we estimate that a speedup of at least 10, and likely 30 or higher, is possible with this 
algorithm, using 128 cores per Mcsa() job. (This will depend heavily on the ratio of parallel to serial work 
as the algorithm evolves. The rough 30X estimate assumes about 2% serial code and ability to utilize 100 
cores for linear speedup of the parallel portion).  
Layer 2: Parallel petascale scripting of Mcsa() rounds. OOPS workflows are innately suited for 
execution in a “loosely coupled” manner [RZ+08], both to parallelize the many independent jobs in the 
workflows, and to permit the science user to customize the analysis of intermediate and final results and 
to insert these analyses into the workflow. 
 The flow of a Fold() operation is shown in Figure 3. We define an OOPS workflow as a set of Fold() (or 

Dock) operations executed in parallel, possibly with 
intervening analysis. Each Fold or Dock consists of N 
rounds. Each round is a set of jobs executed in 
parallel. (Rounds test a large sample of Mcsa() 
outcomes). Each job is one execution of the Mcsa() 
program.  Each execution of the Mcsa program 
consists of a simulated annealing (SA) loop that 
iterates until it “cools” sufficiently. Each SA loop is a 
set of alternating move() and energy-check() 
operations, followed by acceptance or rejection of the 
move. The boundary between loosely coupled “jobs” 

and tightly coupled “function calls” is the Mcsa() application, which is executed as a job. Within Mcsa() we 
make function calls; outside Mcsa() we run programs which exchange files. 
An example of analysis within a workflow is as follows. For each combination of input parameters Si (e.g. 
protein sequence, initial 2o structure, starting annealing temperature, amino acid substitution matrix, etc.) 
we iterate multiple rounds of between 100 and 1000 runs of Mcsa(). After jobs 1-N in Si(round j) finish, we 
gather statistical data about that round, specifically on the average origins or assignments of the 2o 
structures at each position in the sequence. Sometimes this analysis involves clustering of structures 
through various techniques. It is then determined whether or not to stop sampling angles from certain 2o 
structure types at those positions, and jobs 1-N in Si(round j+1) are started with this information as a new 
input file. Additionally, at each of these analysis steps, various plots are created from the output data, 
including average 3D atomic contact maps (and movies), RMSD (3D position accuracy) versus energy 
plots, and 2o structure prediction accuracy. 

eCalc(config) 
   eTable=ReadParameters 
   for i 1 to nAtoms 
      for j = i+1 to nAtoms 
         d=dist(Ai, Aj) 
         eIndex=(Ai,Aj) 
   energy+=eTable(eIndex,Ai,Aj,d) 
   return energy  

Figure 2: OOPS Energy Calculation loop 

Fold(Protein p, int N) 
   s = InitSecStr (from data file)  
   round = 1 
   while not converged and round < N 
      foreach job j in 1..RoundSize 
        model, SecStrList = 
         Mcsa(p, temp, nSteps, moveSet, s ) 
      newS = analyze(model,SecStrList) 
      converged = checkConvergence(newS, s) 
      roundNum++ 

Figure 3: OOPS Folding loop 
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If the information being passed back at the end of round (k) for a set of parameters Si does not differ 
significantly from the information at the end of round (k-1) then the simulation for Si is considered 
converged.  As each set Si finishes, overall summary data is generated. The best predictions from each 
round are compared and the 2o structure fixing across rounds is visualized (Figure with ovals and arrows). 
Movies of the best trajectories are rendered. Comparison with other experimental and simulated data is 
performed, if that data is available. All of these data are compiled in tables and charts automatically (cf. 
the OOPS data in Table 2 below). This application profile 
motivates the following petascale execution framework. 
Parallel Scripting.The need for a flexible scripting model to 
support this style of analysis in a flexible manner motivates 
our proposal to implement petascale OOPS workflows with 
the loosely-coupled parallel scripting paradigm of passing 
data via files between dependent tasks [RZ+08, ZE+08] (as 
shown in Figure 4). This is a natural approach to the task-
independent (single-program, multiple data, or SPMD [SP08]) 
dataflow aspects of the workflow of a typical large-scale 
OOPS run. It has the advantage of being very fast, easier to 
implement and maintain, far more flexible, and dynamically 
adapts to workloads of widely varying task durations. Our 
work to date has proven this to be highly effective on 
petascale systems [RZ+08, ZE+08], challenging the 
conventional wisdom that petascale systems can only be 
efficiently utilized with a tightly coupled message-passing 
programming model.  In contrast, we will employ a more pragmatic hybrid model, in which Layer 1 is 
tightly coupled and Layer 2 is loosely coupled: in essence, a loosely coupled scripted workflow of tightly 
coupled parallel jobs. This approach is well supported by the viewpoint of a highly regarded 2006 study of 
the future of parallel computation from UC Berkeley [AB+06, section 5]. 
The Swift parallel scripting system [S08, ZH+07] provides a useful method of programming large-scale 
computing resources in a uniform high-level manner. It demonstrates an approach that treats grids and 
petascale clusters as if they are complex chips, and takes a code-template approach to automating the 
mapping of scientific workflow, loosely coupled by files instead of tightly coupled by messages, to these 
large-scale systems. By treating entire scientific applications as if they were functions, Swift leverages the 
simplicity and uniformity of the functional model to solve complex data flow specification problems. Swift 
makes large-scale computing resources more accessible to both researchers and students, and lowers 
the barrier to large-scale data analysis. In this role, Swift provides a vitally needed easier-to-use "on-
ramp" for large grids and evolving petascale systems. The  Swift parallel scripting system makes this 
programming style possible with a highly scalable runtime  system and a notation that enables the 
concise specification and reliable and efficient execution of large loosely coupled computations. With a 
few lines of Swift scripting code, one can specify computations involving extremely large numbers of files 
and tasks, and which execute efficiently and reliably on petascale computers. 
Lightweight scheduling. Below Swift, we will integrate into the OOPS framework a petascale-tested 
parallel task execution framework called Falkon [RZ+07, RZ+08]. Falkon is a fast and light-weight task 
execution framework that combines dynamic resource provisioning and a streamlined task dispatcher, 
and has been proven to work with high efficiency on petascale platforms (BG/P) up to 164K cores 
[RZ+08, FA08]. Falkon enables loosely coupled applications to be efficiently executed on petascale 
systems that are otherwise restricted to efficiently handling only large, tightly-coupled applications such 
as MPI programs.   
To handle the hierarchical architecture of the Blue Gene/P [IBM08] in which there are 640 I/O nodes, and 
40K quad-core compute nodes, Falkon distributes its dispatcher function to the many I/O nodes. This 
architecture (described in Raicu et.al [RZ08]) has allowed us to scale to 164K processors with sufficient 
headroom for scaling to much larger systems, and to maintain the thousands of tasks per second needed 
to fully utilize a system with hundreds of thousands of CPUs.  
Collective I/O. Loosely-coupled parallel scripting, while productive for the developer, imposes a high 
performance burden on large scale systems. We address this issue with a collective I/O model for file-
based many-task computing [ZE+08] that we have prototyped on the BG/P and which enables efficient 

 
Figure 4: OOPS Folding Dataflow Pattern 
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distribution of input data files to computing nodes and gathering of output results from them. This 
approach broadcasts common input data, and uses efficient scatter/gather and caching techniques for 
input and output. 
Resilience. When running loosely coupled applications via Swift and Falkon, the failure of a single node 
only affects the task(s) that were being executed by the failed node at the time of the failure. I/O node 
failures only affect their respective processor sets (groups of 256 processors). Falkon can suspend 
offending nodes with high task failure rates. Swift maintains persistent state that allows it to restart a 
parallel application script from the point of failure, re-executing only uncompleted tasks and eliminating 
the need for explicit checkpointing. 
Application packaging and platform support. In the scope of this proposed 4-year effort, we will first focus 
on packaging the OOPS framework for standalone execution on these platforms: 1) The TeraGrid system 
“Ranger” at TACC and future TeraGrid petascale expansions; 2) The Argonne LCF BG/P system 
“Intrepid”; 3) The ORNL LCF Cray XT4 system; 4) small and TeraScale Linux clusters located throughout 
the TeraGrid and Open Science Grid, including the CI Petascale Active Data Server (PADS) system and 
5) a small set of popular desktop Linux workstation environments. Our work to date has shown both the 
OOPS code itself as well as the Falkon and Swift components to be highly portable and platform neutral. 
The OOPS framework will include the core components for the runtime environment and a Java-based 
framework for the workflow submission (client) environment and lightweight task scheduler. 
The framework will be distributed with a built-in set of top-level scripts to perform the most popular 
variations of folding and docking simulation tasks. A rich set of analysis scripts will be provided. Both the 
simulation and analysis scripts will serve as exemplars for users to customize their own scripts. While we 
will package the Petascale OOPS framework for simple “one command” automated compilation and 
installation on a modest set of the most needed runtime environments, we will also collaborate with the 
major petascale environments to maintain shared copies of the OOPS framework for their users. 
Projected speed and effective use of petascale parallelism. Having described the algorithms for 
parallelizing Layers 1 and 2, we can now estimate the speeds we expect to achieve on our target 
petascale platforms. Several estimates below are compared to measurements of a “stock” processor (one 

core of an Intel Q6600), running an average protein (1UBQ.pdb). 
Projections are based on ALCF BG/P “Intrepid”, TeraGrid 
Constellation “Ranger” and press speculation on Blue Waters 
[BW08]. As described above, for folding runs, we do P proteins 
in parallel (constituting a Round). At Layer 2, each simulation of 
a fold takes about 12 minutes (almost entirely CPU time) on the 
stock processor and roughly 60 minutes on a BG/P core. 
The terminology and timings of the nested iterations that 
comprise a single protein folding or single 2-protein docking 
simulation are: 1 fold = 10 rounds; 1 round = 100 to 1,000 Mcsa() 
invocations: 103 to 105 jobs; 1 dock = 10,000 to 1,000,000 
Mcsa() invocations: 104 to 106 jobs; 1 Mcsa() invocation = 
~15,000 to ~100,000  move()/eCalc() steps. 
The degree of parallelism inherent in OOPS folding is # proteins 
x roundSize x corePerAnnealer. At the low end, roundSize = 100 
and coresPerAnnealer = 1.  At the high end, these can both be 
1000, utilizing 1M cores for a single Fold() job. To effectively use, 
e.g., the ALCF BG/P for one protein, we can use roundsize = 

1,000 and  corePerAnnealer = 160. This would cut the 60 minute duration of a Mcsa() job to 2 minutes; a 
10-round fold would take 20 minutes. 
Folding 10 proteins with a fold size of 10 rounds and a roundSize of 1,000 can utilize 100,000 CPUs 
working in parallel with no data dependencies and hence near-perfect scaling. If we devote between 4 
and 16 cores to each Mcsa() function for the parallel computation of the energy of each configuration, we 
can effectively utilize 40,000 to 160,000 compute cores for this task, or 4,000 to 16,000 cores per protein. 
Realistically, even on petascale systems with 50K to 300K cores, most user jobs will run with allocations 
far less than the full system. This scale fits well for today’s usage, and can expand to greater utilization, 
even for single proteins, as the parallelization of the energy computation increases. 

Table 1: Projected Petascale Speedups 

Operation Time (hours) 
#proteins 
#cores x 1K,  
#cores for eCalc() 

BG/P, 
Constellation, 
BlueWaters 

#prot KCore #eC BG Cn BW 

1 10 1 5.3 1.1 0.8 

1 40 4 1.3 0.3 0.2 

1 60 16 0.9 0.2 0.1 

1 164 16 0.3  0.1 

1 250 16 0.2  0.0 

10 60 16 8.9 1.8 1.3 

10 60 160 8.9 1.8 1.3 

10 164 160 3.3  0.5 

100 250 16 21.3   3.2 
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While folding presents excellent opportunities for petascale parallelism, predicting protein docked 
conformations is expected to require far more simulation and can effectively utilize an entire BG/P system 
to dock a single protein pair. Docking will require O(104-106) trajectory calculations – each one an 
independent Mcsa() call that can be given its own core (and, when the energy function is parallelized, its 
own set of cores). Thus docking will immediately generate sufficient independent parallel jobs to utilize a 
petascale system and is an excellent candidate for utilizing a million-core system in the coming decade.  
Based on this analysis, our tentative targets for OOPS execution (comparing the CI TeraPort cluster, 
ALCF BG/P, TeraGrid Ranger Constellation CN as a metric) are shown in Table 1. By comparison, 
folding 1 protein on the 256 core TeraPort cluster at UChicago (Opteron) is approximately a 40 hour 
computation. We caution that all of these numbers are extremely speculative estimates, based on many 
assumptions (especially for Blue Waters). 1 Mcsa() of 0.2 hrs on a stock 2.6GHz processor is estimated 
here as 1 hr on BG/P, .2 on Constellation, 0.15 hrs on blue waters assuming 4GHz cores and no 
superscalar behavior. This is a conservative estimate if we actually scale with clock speed. While 
speculative, these performance goals represent a transformative change in the ways that protein 
folding and docking can be applied as a tool across diverse sub-disciplines. 
Overall confidence in the scalability of our proposed framework is supported by recently published 
tests[RZ08,ZE+08,FA08]. We have since January 2008 been testing, measuring and improving the 
components of the framework proposed here, focusing on the petascale ALCF BG/P system. In this time 
we have run 164M jobs through Falkon, across grid clusters, a 5800 core SiCortex, and BG/P systems, 
with an average task length of 31 seconds. We have utilized 1.2M hours of BG/P time, running 49M 
Falkon tasks, and 105K CPU hours of OOPS on the BG/P with 102K tasks averaging 3700 seconds. Our 
results indicate excellent utilization, using Falkon at scales up to the full BG/P (163,840 cores). 
 As an example of the scalability of this approach on an application very similar in profile to OOPS, we 
tested a DOCK5 workload that consisted of 934,803 jobs, which we ran on 116K CPU cores in 2.01 hours 
[RZ+08]. The per-task execution time was quite varied, with a minimum of 1 second, a maximum of 5030 
seconds, and a mean of 713±560 seconds. The two-hour run had a sustained utilization of 99.6% (first 
5700 seconds of experiment) and an overall utilization of 78% (due to workload dropoff at the tail end of 
the experiment). OOPS jobs are much more uniform in run time and will not exhibit this “tail effect”. These 
preliminary results support our belief in the value and feasibility of loosely-coupled petascale computation. 
We have been running OOPS itself on the ALCF BG/P system since Aug. 2008 at levels up to 64K cores 
with near-perfect processor efficiency. Our results from these tests indicate that our design yields an 
easy-to-run system, delivers linear scaling consistent with the results obtained at much larger levels for 
DOCK and synthetic benchmarks, and shows the feasibility of our Layer-2 architecture. 
User interfaces to the petascale OOPS framework. Layer 3, the user interface layer, will provide 
workflow hosts, web-based OOPS request interfaces, and data, metadata and provenance catalogs. An 
OOPS “run configurator” mechanism packaged for use both from a web-form-based interface as well as 
via a simple textual command specification will enable users to specify OOPS runs with no programming. 
The web interface will be runable locally by any user or community as a service of the OOPS workflow 
framework. Users seeking more control over customizing their runs can write their own Swift scripts 

based on the models provide for the supplied library of scripted 
applications. 
As a natural by-product of our OOPS petascale development 
effort, we will create an environment, hosted at the UChicago 
Computation Institute (on its Petascale Active Data Store and 
TeraPort systems) to serve as a protein science gateway to 
the large-scale execution of OOPS for folding and docking. 
This will provide workflow hosts, web-based OOPS request 
interfaces, and data, metadata and provenance catalogs. As 
needed, based on security considerations (i.e, the ability to 
securely host web interfaces and access external file 
repositories), we will either replicate this framework within, or, 
preferably, integrate this environment with DOE-based LCF 
BG/P and XT4 systems. While this environment will be created 
initially to serve the needs of the local UChicago / Computation 

 
Figure 5: OOPS User Environment 
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Institute research community, we are eager to open it up for use by scientists across the US and around 
the world, to the extent that we can support this.  
The collaboration environment will enable scientists in diverse disciplines to catalog and share input and 
output datasets, and to compare results from variations on parameter sets and algorithms. The 
collaboration environment will leverage the CI’s new NSF-supported Petascale Active Data Server 
(PADS) – a .5PB storage system integrated with a 384-node cluster, with another .2PB of storage and 
ample RAM on the cluster nodes [CI08, H08] (NSF grant OCI-0821678). This will be an ideal facility for 
“stage-2” analysis (where stage-1 analysis is done on the target petascale systems themselves as part of 
the OOPS workflow, as described above). 
Among the many advantages of our script-based approach to the “outer” parallelization of OOPS is that 
we get automated data provenance tracking [CF+08, ZWF06] from the workflow execution engine, as well 
as the ability to leverage multiple petascale execution resources within a single workflow.  
While development of new visualization software is outside the scope of the proposed effort, existing 
visualization tools can be readily integrated into the framework (via analysis scripts) and can leverage 
many existing tools to visualize protein conformations, 2o structure, and statistics. Tools such as R, 
Octave, and MatLab can be readily integrated into analysis scripts (as many Swift users do today). Such 
analysis scripts can utilize the same parallel scripting language as the OOPS run-time framework, and 
can run both on the target petascale systems as well as the backend “stage-2 analysis” environments 
such as PADS, clusters and workstations. 
4 Science Approach – Protein Simulation Methods and Algorithms 
In this section we describe the computational chemistry approach to folding and docking that is 
implemented by the OOPS framework. The level of detail is intended for those familiar with the field. 
Background. While there has been great progress with predicting 2o and 3o structure using homology-
based methods, the goal of predicting structure from sequence alone remains elusive. Furthermore, the 
accuracy of 2o structure prediction methods has reached a plateau despite their crucial role as input to 
most methods for predicting 3o structure. A major barrier in structure prediction has been the reliance on 
known structures with significant sequence similarity, or homology, to the target sequence. Many 
successful prediction methods begin with an alignment of homologous sequences (e.g., PSI-BLAST  
[ASF97]). Because the accuracy of the 2o structure prediction degrades for target sequences with low 
homology, the accuracy of 3o structure predictions similarly diminishes for both template-based modeling 
and simulations using homologous protein fragments. The reliance on homology precludes identifying the 
underlying physiochemical principles that govern protein folding, including determining the minimal 
essential information and model of protein structure that are required for accurate structure prediction. 
A deficiency of many 2o structure prediction methods[JDT99,PP+02] is the failure to explicitly include 3o 
context. Context dependence can override local biases[MK96,KD05,AH+07], and its neglect has limited 
2o structure accuracy to about 80% for decades[DZ07]. Previous attempts to improve prediction by 
including 3o structure predictions achieve rather limited success [MB03].  
We have devised a strategy in which 2o structure prediction is integral to and a consequence of the 
folding process. Consequently, our strategy may share some benefits that real proteins gain by folding 
along a robust and efficient pathway. While others have integrated the determination of 2o and 3o 
structure[LK+05,YC+07] with an iterative fixing of structure[SR95,SF+04,OW+07], our approach differs by 
not using any exogenous 2o structure prediction or homology, and our model lacks side chain degrees of 
freedom, which greatly reduces computation time, and the entire chain interacts at all stages. Our results 
suggest that models that do not include explicit side chains or utilize homology can be as accurate while 
requiring far less computing time. In addition, information about folding pathways can be extracted from 
simulations (DeBartolo, Freed, Sosnick, submitted). 
Integration of 2o and 3o structure prediction. Our ItFix algorithm focuses on three fundamental protein 
properties, the sequence dependent torsional preferences of the polypeptide backbone, its hydrogen 
bonding requirements, and the different chemical properties and packing preferences of the twenty amino 
acid side chains. As each factor strongly influences the other two, a major challenge lies in 
simultaneously incorporating all three factors into a folding algorithm. The model retains the backbone 
heavy atoms and the side chain Cβ atoms [CJ+06,ES06,SS+06,FJ+08], so the backbone dihedral  
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angles φ,ψ are the only degrees of freedom in this reduced representation. Hence, only 2N parameters 
are needed to describe a chain of N residues.  
Iterative fixing and trimer selection. A critical aspect of the algorithm is the selection of trimers from an 
increasingly refined trimer library, similar in spirit to earlier studies [SR95,SF+04,OW+07]. During the 
initial round of the simulations, trimer selection is conditional only on the amino acid identity of the three 
residues (Fig. 6). Trimer selection in subsequent rounds depends on the 2o structure type at each position 
that is identified from the previous round by the prescriptions described below. The specification of 2o 
structure is enabled because the three residues of each trimer in the trimer library are labeled by their 2o 
structure assignments in the PDB structure in which they originate using the Dictionary of Protein 
Secondary Structure (DSSP) definition. The frequencies of occurrence for each originating 2o structure 
type, H(elix), E(xtended), or C(oil), are calculated from the last inserted trimer at each position in the 
O(102) final structures emerging from each round of folding. Following Sherlock Holmes’ deductive 
strategy “Eliminate all other factors, and the one which remains must be the truth.”[DAC90], if the 
frequency of occurrence for a particular 2o structure type falls below a 5-10% threshold at a given 
position, any trimer with that 2o structure at this position is removed from the trimer library used in 
subsequent folding rounds. The process continues until no additional positions can be further restricted. 
After the last round, the best structures are identified. 

 
Our MCSA algorithm is designed to mimic rather than replicate the true folding pathway. Each round in 
our iterative fixing (ItFix) process begins from a configuration devoid of any 3o structure. The backbone 

Not(Helix)  
helix 

strand 
Not(Strand) 

Coil subtypes: 
 

Starting configuration (no 2o structure restriction) 

Repeat until no further fixing is possible 

Predicted 2o structure from consensus 
Predicted 3o structure based lowest energy structure 

Fold using trimers from the LibraryInitial 

LibraryInitial 

Remove trimers of lowly-populated 2o Str 

LibraryRestricted 1  

LibraryRestricted final  

Remove more trimers 

Eliminate an option (H,E,C) if  
PHelix, PCoil < 10%, PExt < 5% 
 

LibraryRestricted 2  

Remove more trimers 

φ,ψ 
move 

Fold with trimers from LibraryRestricted final Final 
Round 

“U” 

Fold with trimers from LibraryRestricted 1 

“I1” 

“I2” 

Fold with trimers from LibraryRestricted 2 

Fig. 6 ItFix Algorithm. Trimer-based moves are obtained from a library that is increasingly restricted 
during the multiple rounds. In the initial round, all sequence-compatible trimers are allowed. In 
subsequent rounds, trimers are removed if their SecStr type is observed at low frequency at the end 
of the previous round of folding. The starting configuration (black line) is built from the insertion of a 
trimer at each position based only on its amino acid identity. The frequencies of SecStr are 
calculated and used to restrict trimer selection in future rounds For some regions, H or E are 
eliminated as an option in early rounds (two-color ovals), eventually becoming fixed to a single 
SecStr type (solid). At the end of the final round, the lowest energy structure is selected as the 
predicted structure, while the predicted SecStr is an outcome of the iterative fixing process during 
multiple rounds.  
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geometry is simulated by replacing one pair of φ,ψ dihedral angles at a randomly chosen position with 
those from the equivalent position in a φ,ψ trimer selected from a library. In principle, these angles could 
be obtained from all-atom simulations for tripeptides, but current methods are much less reliable [ZS+03]. 
The starting chain is built using trimers initially specified solely by the amino acid sequence. However, the 
library becomes increasingly conditional on 2o structure type as the rounds proceed. Each round of the 
iterative folding consists of O(102) individual folding trajectories. Each trajectory involves a global search 
guided by single φ,ψ insertion moves whose acceptance is governed by a Metropolis criterion with a 
statistical potential for a scoring function. The trajectory ends when the collapsed structure cannot 
undergo additional moves. The final product is a folding-enhanced 2o structure prediction that emerges 
simultaneously with an ensemble of 3o structures. 
Retaining lost side chain information. Retention of the side chain information lost by the use of the Cβ-
level representation poses an extreme challenge. Central to this goal is our φ/ψ dihedral angle sampling 
procedure that is conditional on both the chemical identity and the increasingly refined 2o structure 
specificity for each position and those of the neighboring residues. The backbone dihedral angles are 
strongly correlated with the side chain rotomer angles and both the neighboring residues’ side chain 
identities and conformations [JC+05,JC+05b,CJ+06]. Hence, even without explicitly depicting the side 
chains, much of their influence is retained by choosing φ,ψ values using our trimer selection strategy.  
Given this retention of the interplay of side chain/backbone interactions, the other elements of our 
algorithm focus on optimizing 3o interactions and to a lesser degree, backbone hydrogen bonding. 
Tertiary interaction energies are obtained from the statistical potential “DOPE-Cβ”[CJ+06,FJ+07] derived 
from an all-atom pairwise potential [ES+06,SS+06] that uses a novel reference state and distinguishes 
the backbone atoms according to amino acid type. Our version removes from the all-atom potential 
contributions involving side chain atoms beyond the Cβ atom, as appropriate to the reduced Cβ chain 
representation. To eliminate bias towards specific 2o structure types, the attractive potential is removed 
between atoms in contiguous units of 2o structure. The repulsive portion of this term is retained between 
all atom pairs to prevent steric overlap.  In addition, interactions are conditional on backbone geometry 
and the relative orientation of the Cα-Cβ  bonds of the two interacting side chains. The latter feature is 
particularly helpful in setting up the over-all chain topology so that collapse generates native-like 
structures. Beyond the prescription used to eliminate a 2o structure option in the trimer library, the only 
adjustable parameters are the four relative weights of the components of the statistical potential. Due to 
computational costs, the weights are derived semi-empirically but will be optimized with petascale 
facilities. Our Cb energy calculation is ~four-fold faster than any all atom potential, and is able to take into 
account the most important interactions in the folding process. The energy calculation is the most 
expensive part of any molecular simulation code, so we foresee a great interest in incorporating this 
function in other researchers’ work. 
Performance. Our methods have been benchmarks on two diverse sets of proteins. The first set of 
targets originates from a previous study that integrates 2o and 3o structure prediction [MB03]. The first set 
contains proteins with fourteen diverse folds and relatively low sequence homology. Our accuracy of 
predicting the three major 2o structure types, termed “Q3 level”, generally surpasses that from the 
prediction servers SSPRO[PP+02] and PSIPRED[JDT99] and the previous study[MB03], with some 
exceptions. A second set of targets originates from a study focusing on improving 3o structure prediction 
using extensive homology and side chain refinement. The high homology of these sequences is 
responsible for the 2o structure prediction accuracy to exceed 80% for both the SSPRO and PSIPRED 
servers, well above the large scale benchmarking for these methods. Nevertheless, our iterative fixing 
protocol achieves comparable accuracy without invoking any homology information (Table 2, Fig. 7). 
Furthermore, we also predict all eight types of 2o structure (aka Q8 level) by subdividing coil into the six of 
the DSSP-defined subtypes. This ability also is available using SSPRO, but it is less accurate for most 
targets.  
The ItFix algorithm describes both protein sets with comparable accuracy for α, α/β, and  β proteins (Fig. 
7, Table 2). These predictions are comparable in accuracy with the highly successful Rosetta fragment-
based insertion algorithm, as implemented in the papers from which the test sets are 
obtained[MB03,BM+05]. Our structures are more comparable in quality for the low homology set than the 
high homology set, as expected given that Rosetta extensively uses homology to obtain the increased 
accuracy. In addition, the Rosetta algorithm includes extensive side chain refinement and requires over 
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an order of magnitude more computation time[BM+05] than our algorithm which does not include side 
chains. We applied the ItFix algorithm in the CASP8 experiment. A notable success was the prediction of 
T0482 (2k4v.pdb), a 120 aa α/β protein (Fig. 7). 

Table 2: Comparison with existing prediction methods for proteins taken from [BM+05] 

Protein Secondary Structure Prediction (% accuracy) 3o Structure Prediction- 
(Ca-RMSD, Å) 

PDB 
ID Length Fold  ItFix  Q3 (Q8) SSPRO Q3 (Q8) PSIPRED  

Q3 ItFix Baker et al. 
(best1) 

1af7 69 α 96 (87) 86 (81) 90 2.6 10.4 
1b72A 50 α 84 (80) 68 (72) 84 2.4 1.1 
1csp 67 β 87 (75) 75 (67) 88 6.5 4.7 
1di2 68 αβ 88 (84) 74 (75) 97 6.1 2.6 

1mky 77 αβ 88 (75) 87 (71) 90 5.2 6.3 
1o2Fb 77 αβ 83 (70) 79 (66) 75 5.8 10.1 
1r69 61 α 93 (89) 84 (72) 92 3.9 1.2 

1shfA 59 β 85 (63) 85 (69) 80 6.7 10.8 
1tif 57 αβ 89 (79) 86 (70) 93 4.6 4.1 
1tig 86 αβ 81 (67) 69 (67) 74 5.3 3.5 

1ubq 73 αβ 90 (69) 88 (67) 90 3.7 1.0 
1Values shown are taken from ref. [BM+05], Table 1, Column 7 “Best Ca-RMSD of the centers of the 
largest five clusters from the low-energy models from Round 1”. 
Future Studies. We propose to continue optimizing the algorithm, focusing on better methods to include 
homology-based information and ensure a topologically correct collapse. The energy function will be 
improved by adding a penalty for burial of unsatisfied H-bond donors and acceptors and by renormalizing 
energies as a function of burial to account for multi-body effects and cooperativity. Success in the 
template-free prediction of pathways and structure using a Cβ-level model will imply that we have 
identified many of the important principles that govern the folding process and will be well-positioned to 
determine the structure of proteins with no known template. 

Utilizing the known sequence universe. Although our algorithm can function admirably without 
homology-based information, we have found that utilizing the vast amount of known sequences produces 
superior results. Our original sampling is restricted to trimers having the same amino acid sequence as 

Fig. 7. ItFix 3o structure prediction. A) Comparison between homology-free ItFix predicted (lowest 
energy among compact structures) and native structures w/ PDB code and Cα-RMSD. B) ItFix 
prediction for CASP8 target T0482 (for this prediction only, the trimer library was enhanced using 
trimers from homologous sequences, but no structural fragments from homologous structures were 
used). RMSD calculation ignores the isolated helix at the terminus. Global Distance Test (GDT 
value is the percentage of the sequence within a distance of the native structure. This distance is 
the y-value on the plot, e.g., for the ItFix prediction, 50% and 92% of the residues are predicted to 
within 4.3 and 10 Å of the native structure, respectively. The ItFix prediction (red, with human 
intervention) compares extremely favorably to top server predictions (other human predictions are 
currently unavailable). 

1tif  4.6 Å  

A) B) T0482 
2k4v 120 aa, 
5.4 Å 

 

1shf  6.7 Å  % of Sequence 
 

0        20         40        60        80       100 
 

10 
 
8 
 
6 
 
4 
 
2 
 
0 

GDT 
plot 

 

1af7  2.6 Å  1b72  2.4 Å  

D
is

ta
nc

e 
cu

t-o
ff 

  (
Å

) 



 12 

the parent. To increase the number of trimers and take advantage of homology information, the library is 
enriched using data from sequence-homologous stretches of 20+ residues as determined using PSI-
BLAST. The aligned regions identify other possible amino acids at each position. These other possibilities 
are combined with the possibilities at the other two positions to create new trimer combinations. Though 
the new set of trimers are in general better than the original trimers even in abnormal situations, they 
provide increased diversity that often is required to provide a native set of angles at a few critical positions 
in the sequence. This methodology was used during the blind protein structure prediction challenge 
CASP (Fig. 7) and further studies are under way. 
Adapting the OOPS Method to Docking. The conversion of the OOPS folding algorithm to perform 
docking calculations is simple. The two partners are tethered together with a virtual poly-glycine tether. 
This tether undergoes the normal “Type 1” moves that involve inserting a single φ,ψ angle pair, and the 
standard energy is calculated, although only between the two complexes (just inter-protein, ignoring the 
tether). These studies will take advantage of the accuracy and speed of our Cβ-level energy calculation. 
After predicting a possible set of docked conformations (e.g. 103) using Type 1 moves, the conformations 
will then be subjected to Type 2 moves wherein the backbone is relaxed.  
Although we are new to the docking field, we effectively have already been conducting docking studies 
during the CASP8 experiment: we often predicted two subdomains which were then docked to each other 
by folding the connecting region.  
Refinement Move Type 2. Although useful for folding an extended chain, the φ,ψ insertion move is 
inadequate for backbone relaxation within the condensed state. What is required for structural refinement 
either in the context of folding or docking is a move set that allows residues to execute moves with large 
changes in backbone dihedral angles while leaving the flanking regions largely unchanged. The move of 
most relevance to the present work is a crankshaft motion wherein the ψi-1 dihedral angle of the preceding 
residue is rotated in an equal but opposite direction as the φi of the residue of interest: (ψi-1,φi) → (ψi-1+δ,φι-
δ). This move is used infrequently in structural refinement and then apparently only for minor angular 
changes for a single peptide group, Δφ, Δψ ≤ 3°[RS+04]. Our refinement method, in contrast, allows 
arbitrarily large δ while maintaining optimal backbone geometry. 
A large scale crankshaft motion can locally improve the protein’s backbone geometry while maintaining 
the RMSD of the entire backbone within ~ 1 Å even with backbone rotations of 180° . Although the single 
crankshaft move is extremely useful, we have developed a move that combines the best predictive 
capabilities of fragment insertion methods with the fine-scale refinement possible with molecular 
mechanics methods. This move is a concerted “double-crank” move of 4 consecutive dihedral angles:  [(--
,ψ ι−1), (φι,ψ ι), (φι+1,--)]→ [(--,ψι−1−δ), (φι+δ,ψ ι+Δ), (φι+1−Δ,--)]. The move is particularly powerful because it 
alters both the φ,ψ angles of the center residue, unlike the single-crank move, which only alters one 
angle. Because the center residue’s φ,ψ values can both be changed by an arbitrary amount, the double-
crank move can be combined with our extensive knowledge of dihedral angle preferences 
[JH+05,JH+05b,CJ+06] wherein the angles φι,ψ ι are selected according to the amino acid identity and its 
nearest neighbors’ sequence and conformation. The double-crank move, when combined with PDB-
based φ,ψ frequencies, significantly improves the backbone stereochemistry without disrupting the fold. 
We have used it to refine crystal structures, improving published Rfree values. Because these moves are 
conducted without side-chains, the calculations are fast and the structure are much less likely to be 
trapped in local minima. Folding of multi-domain also will profit form Type 2 moves. We stress that our 
utilization of homology is at the sequence level, and there are ~ 3x107 sequences, whereas normal 
implementation of homology uses structures and there are only ~104 unique structures in the PDB.  
5 Comparison to state of the art, and other work and approaches 
Protein simulation approach. Most folding algorithms rely heavily on known structures or fragments 
(homology- or template-based) and can be extremely successful. Their success, however, rapidly 
decreases as the amount of known information decreases[SRF08]. Nearly uniquely, our folding algorithm 
focuses on incorporating principles of protein chemistry and on mimicking a folding pathway to restrict the 
search space. We rely minimally on homology, and even then, only on sequence but not structural 
homology. Nevertheless, the homology-free predictions from OOPS rival or exceed homology-based 
methods for small proteins which use explicit side chains, engendering optimism of continuing progress.  
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Our algorithm is able to predict the structures of two sets of proteins with comparable accuracy for α, α/β, 
and β proteins (Table 2, only one set shown). These predictions are comparable in accuracy to the highly 
successful Rosetta fragment-based insertion algorithm, as implemented in the papers from which the test 
sets are obtained[MB-3,BM+05]. 
Computing approach.  Until recently, most of the applications run on emerging petascale computing 
systems, such as IBM’s Blue Gene/P [IBM08] were “tightly-coupled”, and were commonly implemented 
by using the Message Passing Interface (MPI) to achieve the needed inter-process communication. In 
contrast we enable the use of these resources for task-parallel applications, which are linked into useful 
workflows through the looser task-coupling model of passing data via files between dependent tasks. This 
larger class of task-parallel applications was typically precluded from leveraging the increasing power of 
modern parallel systems due to the lack of efficient support in those systems for the “scripting” 
programming model [O98]. We claim (and have proven) that many-task computing (MTC) [RZ08] 
applications can be executed efficiently on today’s supercomputers. Our previous work [RZ08,ZE08] 
provided empirical evidence to prove our claim by testing and measuring two systems, Swift [ZH+07] and 
Falkon [RZ07] and various applications such as BLAST, DOCK [M+06], MARS [H06], OOPS (discussed 
above), and CNARI [C+08].  We point out various factors that motivate the support of MTC applications 
on petascale HPC systems. The I/O subsystem of petascale systems offers unique capabilities needed 
by MTC applications. [RZ08,ZE08] The cost to manage and run on petascale systems like the Blue 
Gene/P is less than that of conventional clusters or Grids. [AU08] Large-scale systems inevitably have 
utilization issues, and hence it is desirable to have a community of users who can leverage traditional 
back-filling strategies to run loosely coupled applications on idle portions of petascale systems. Perhaps 
most important, some applications are so demanding that only petascale systems have enough compute 
power to make certain problems tractable in a reasonable timeframe, or to leverage new opportunities. 
Others have come to the same conclusion we have, identifying that HPC machines can be efficiently 
used for non-traditional workloads, and have begun work on building the necessary middleware to 
support these new kinds of applications. IBM has proposed in their internal project Kittyhawk [AUW08] 
that the Blue Gene/P can be used to run non-traditional workloads, such as those found in the general 
Internet, which are by definition part of a loosely coupled system. Cope et al. [CO+07] aimed at 
integrating their solution in the Cobalt [D05] scheduling system (as opposed to bringing in another system 
such as Falkon); their implementation was on the Blue Gene/L using the HTC-mode [IBM08b] support in 
Cobalt. Peter’s et al. from IBM also did a similar study using the HTC-mode native support in Cobalt 
[PK+08]. Condor [TTL05] is also in the process of supporting high throughput computing on the IBM Blue 
Gene, but there has not been any formal citable literature other than presentation slides outlining their 
efforts.  Our previous work [RZ+08] compares and contrasts the performance between our proposed 
system using Falkon on the Blue Gene/P and the results presented by Cope at al. [CO+07] and Peters et 
al. [PK+08], and found at least one order of magnitude better performance, and several orders of 
magnitude better scalability. This improved performance and scalability of the middle-ware can translate 
into direct improvements in scalability and performance for applications, with finer grained task parallelism 
and reduced end-to-end application execution times. 
6 Project plan 
This proposed effort will deliver: 1) A protein folding application that minimally annotates the 2o structure 
(and local 3o structure) of low-homology protein sequences. 2) A protein-protein docking tool which 
includes backbone refinement, to determine the most-likely pairings within groups of proteins. Our efforts 
will include the rigorous testing and performance/accuracy tuning of these applications. 3) A supported 
open source version of OOPS enabled for and tested on specific major available petascale systems and 
related support architectures (workstation to terascale grids). 4) A library of scripts for executing these 
applications in diverse ways and for flexibly adapting them to new uses. 5) The OOPS parallel energy 
function as a readily integrated module for other parallel and petascale applications with similar needs. 6) 
A general petascale computing framework and application toolkit useful for multi-order parameter replica 
exchange and other similar problems. 7) Initial limited support for a community of users, including a 
“science gateway” for data sharing and web-based invocation of the tools. 8) Published libraries of large-
scale runs on proteins with limited homology, and other datasets of value to the broader community. 
A high-level summary of development milestones is: Year 1 (2009-10) Support for BG/P (ALCF) and Sun 
Constellation (Ranger); initial web interface; initial parallel multicore energy function with OpenMP (eCalc, 
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multicore); Scaling to 500K-task workflows; Integration of Collective I/O ; prototype docking/recognition. 
Year 2 (2010-11): Parallel MPI eCalc; Extend to ORNL Cray XT4; scaling to 1M task workflows; Intelligent 
combined multicore/MPI eCalc; PADS-based user environment; Scaling to 500K-task workflows; 
production docking/recognition. Year 3 (2011-12): ;Prototypes on Blue Waters; Create a web service; 
I2U2 e-Lab prototypes; i-Lab for MSI and elsewhere?; Scaling to 10M task workflows; Data/metadata and 
provenance catalogs in user environment. Year 4 (2012-13): Maintenance, testing, tuning; I2U2 e-Lab 
and i-Lab interfaces; enhancements of science gateway environment and end-user documentation. 
Transition to open source development and support. 
Our staff plan is described in the budget justification. Our proposed approach of using a parallel scripting 
method greatly reduces the programming staff-hours needed for the project, and the fact that we have 
successfully demonstrated the technique and middleware stack for OOPS makes us confident that the 
staff resources we request are adequate to deliver what we propose here. For computing resources, we 
currently possess for various development efforts 200K (scaled) CPU hours of Ranger time and are 
conducting our ALCF work using a director’s discretionary allocation on the 164K-core ALCF BG/P which 
will continue through the duration of this project. To supplement these allocations we will apply for 
extended allocations on TeraGrid Ranger and on both LCF systems via INCITE proposals. 
Within our local development environment, OOPS, Swift and Falkon are already packaged for easy end-
user installation, and all three are maintained under version management using “Subversion” [SFP08]. 
Issue tracking is already in place for Swift and Falkon, and will be added for OOPS (using the Bugzilla 
system [BUG08]). For continuous build-and-test, Swift already makes use of the NSF NMI “Build and 
Test” facility “Metronome” [NMI08], which on a regular basis performs and automated build of an 
application on a set of supported target environments, and executes an automated test suite on each. All 
of these industry-standard approaches to methodical development will ensure that the petascale OOPS 
framework can reliably serve the needs of a large, international user community. 
7 Results from prior NSF support 
Research supported, in part, by NSF Grant CHE-0416017, 7/1/04 – 6/30/08 to Freed, “Self-assembly 
in associating fluids: Transition coupling and branching” (total cost: $465,000) and by CHE-
0749788, 3/1/08 – 2/28/09 (total first year: $180,000), "Systematic Theoretical Description of 
Thermodynamics and Dynamics of Self-Assembly”.  
Support from the previous grant has contributed to 17 papers [FL1-17] and 6 are from the current grant. 
[FL18-23]  Since there is no overlap with the current proposal, only a brief summary is provided for some 
of the projects concerning self-assembly and the related topic of glass formation in polymer systems. The 
self-assembly of dynamic clusters is a ubiquitous phenomenon in which the constituent molecules or 
particles form and disintegrate clusters of various geometries in a dynamical equilibrium. This dynamic 
clustering process is prevalent in biopolymer, polyelectrolyte, and ionic solutions, solutions of amphiphiles 
and molecules exhibiting supramolecular assembly with highly directional (hydrogen bonding, pi-pi, polar, 
and multipole) interactions. Self-assembly is a basic element of bottom-up nano-manufacturing, and 
elucidating the factors controlling the structure and the stability of dynamical particle assemblies is key to 
successfully applying this fabrication approach. This NSF supported research has led to significant 
advances: Our theory provides insight into numerous previously unexplained observations for, e.g., ionic 
fluids, where large scale correlation length amplitudes and narrow Ising critical regimes have been an 
enigma. Our theory of glass-formation in polymer fluids is the first to relate thermodynamic properties of 
polymer glasses to the monomer molecular structure, explaining many enigmatic trends in glass-
formation and in the fragility of polymer glasses.  
Research supported, in part, by NSF Grant OCI-0721939, 9/1/2007 – 8/31/2009, to Wilde, “SDCI 
NMI: Improvement of the Swift Science and Engineering”, (total cost: $599,907). The main 
deliverable of this project is the middleware-level software tool "Swift" (which is an important component 
of the work proposed here, and is described briefly above and in the references) Just past its first year of 
funding, Swift is being used by scientists in biochemistry to do molecular ligand-protein docking at 
massive scale, neuroscientists to study language and other behavioral mechanisms, medical physicists to 
develop automated image pattern detection mechanisms, computer scientists to do automated image 
analysis for surgical planning, bioinformaticists to study human genetics, and economists to study energy 
policy. Publications include [ZE+08, ZH+07, ZRF08, ZR+08, ZWF07, CF+08]. Research supported, in 
part, by NSF Grants PHY-0736126, 0538356 and 0636265, covering 10/1/2005 through 9/30/2011, to 
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PI M. Bardeen, “I2U2: Interactions in Understanding the Universe” (cost: $1,604,640). As co-I of 
I2U2, Wilde supervises the design, development and support of grid services for the I2U2 science 
education project, serving approx. 200 high schools [BG+06, I08,LT07]. Education supported in part by 
PHY 0621704, “Sustaining and Extending the Open Science Grid: Science Innovation on a 
PetaScale Nationwide Facility” 09/01/2006 to 8/31/2001, PI M. Livny ($8,427,000). Wilde served 2006-
2008 as the Education Coordinator of the Open Science Grid. Workshop supported by NSF Grant 
OCI0736291 Cyberinfrastructure Learning and Workforce Development: CI-TEAM Community 
Building Workshop 06/01/2007, PI S. Lathrop ($144,151). As co-I, Wilde assisted in the development 
and delivery of the NSF 2008 CI-TEAM PI’s Workshop, facilitated workshop sessions, and spoke on OSG 
and TeraGrid cyberinfrastructure. 
8 Concluding Summary 
High speed, high accuracy and high capacity simulation of protein folding and docking/recognition are 
vital tools for advancing important problems in chemistry and biology. For instance, the description of 
docking site recognition and relaxation cannot proceed without efficient petascale facilities. This proposal 
will adapt OOPS to operate in a petascale environment, tuned, tested and supported on the 4 major open 
science platforms of the next half-decade. The OOPS tools have distinguished themselves in providing 
improved 2o structure and comparable 3o structure predictions to the best of these methods without the 
need for homology information. Thus, OOPS is poised to predict structures of the ever growing body of 
totally unknown, unsolved proteins. The many existing groups with their own folding codes will find our 2o 
structure predictions (particularly in probabilistic form) essential for low-homology sequences. In addition, 
several components of the petascale OOPS framework will be highly reusable by other computational 
science software developers: the workflow framework (and the work that will enable this framework to be 
easily installable in a simple and automated manner) and the parallel energy calculator.   
We propose a two-pronged strategy for utilizing petascale systems to achieve ultra-high capacity: internal 
parallelization of the OOPS simulation’s costly energy calculations, and the embedding of OOPS into an 
already petascale capable, parallel scripting systems The resulting unique framework and approach will 
make OOPS run very fast on petascale machines with higher accuracy/resolution than previously 
possible, thus serving as an excellent example of the capabilities and benefits of petascale computing.  
The proposed packaging approach will enable the parallel OOPS code to run in a wide range of 
environments – a necessity for supporting petascale systems with limited availability even to users with 
awards of time on them – and will provide a fully ready end user environment that will enable immediate 
use on the 4 main systems targeted here (at ALCF, ORNL, TeraGrid, and eventually Blue Waters). 
Because so many of the risks of this effort have been mitigated through prototyping, petascale OOPS will 
be ready for initial use in very short order – and is demonstrable now at scales of 64k cores. Regardless 
of whether our or other existing folding/docking codes are used, the computational environment created 
will be generally useful for every group performing loosely coupled calculations. 
Our multi-disciplinary collaborative team has the necessary combination of expertise in chemistry, 
computing, and computational science, a highly usable framework, and great scientific insight. The work 
benefits from technologies developed by collaborators within the UChicago Computation Institute and 
which can be adapted and supported to meet the needs of the petascale OOPS framework. Our CS team 
works closely with ALCF and the TeraGrid, is already running on BG/P and Ranger, and is applying a 
similar approach to applications across many disciplines. Thus, the likelihood of success is excellent, and 
the cost of the development and support of the core technologies is amortized over many projects. 
Broader impact for education and its integration with research. We propose a compact but sufficient 
staffing plan – weighted to involve students and early-career scientists, and the project will provide 
excellent multidisciplinary training for graduate students, postdocs, and undergraduates. The broader 
impact of the proposed work is manifest both in our approach and demonstrated commitment (and 
results) in training, education and mentoring, and in the significant scientific and software fringe benefits 
of the proposed approach. In the TEAM arena, we propose an education plan that is effective and 
comprehensive for integrating research and education, and for utilizing the science and computational 
deliverables of this project immediately in science education from the high school through postdoctoral 
level – through e- and i-Labs (for high schools and science museums), courses and workshops (for 
graduate and advanced undergraduate education. Our plan for teaching the techniques of computational 
science will have broad benefits far beyond the specific science focus of the petascale OOPS framework.  
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